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Abstract

Having accurate estimates on downside risks is a key step in risk man-
agement. For financial time series, specific features such as heavy-
tailedness and volatility clustering lead to difficulties in downside risk
evaluation. The Generalized Autoregressive Conditional Heteroscedas-
ticity (GARCH) model captures these features regardless of the dis-
tributional assumptions on the innovation process. Nevertheless, dis-
tribution of the innovations plays an important role when analyzing
conditional and unconditional downside risk. We show that the diag-
nosis method on the heavy-tailedness of GARCH innovations in McNeil
and Frey [2000] is not reliable for GARCH processes that are close to
Nonstationarity. With comparing different tail index estimates, we
provide an alternative approach which leads to a formal test on the
distribution of GARCH innovations. Empirical analysis on real data
confirms similar finding as in McNeil and Frey [2000] when modeling
financial returns with the GARCH model, the downside distribution of
innovations possesses heavier tail than the usual normality assumption.
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1 Introduction

Downside risk of financial investment is of the major concern for investors.

Risk managers often assess downside risk measures such as the Value-at-

Risk (VaR) to evaluate the potential large loss of their investment portfolios.

Regulators also consider downside risk of financial institutions and impose

regulation to prevent severe systemic crisis based on quantitative risk mea-

sures. Having an accurate estimate of the downside risk measures is not an

easy task, due to specific features of financial time series. First, the time

series of financial returns exhibit volatility clustering. Second, the distribu-

tion of financial returns exhibit heavy-tails: the downside tail of the return

distribution decays in a power-law speed instead of the exponential speed as

in that of the normal distribution. The two specific features impose a great

challenge in producing accurate and time-varying estimates of downside risk

measures.

The Generalized Autoregressive Conditional Heteroscedasticity (GARCH)

model introduced by Bollerslev [1986] attempts to capture the volatility

clustering feature of financial returns by modeling the dynamic of volatil-

ity. Thus, it leads to time-varying estimate on downside risk measures such

as the VaR. Another surprising fact of the GARCH-type models is that

they capture the heavy-tailedness at the same time. Following the result

in Kesten [1973], the stationary solution of GARCH (1,1) process follows a

heavy-tailed distribution, see Mikosch and Starica [2000], Davis and Mikosch

[2009], etc. Therefore, the GARCH-type models turn to be an effective in-

strument in risk management.
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This paper provides a diagnosis framework on the distributional assump-

tion of GARCH innovations. The distribution of GARCH innovations plays

an important role for both conditional and unconditional risk measurement.

When analyzing conditional risk, it is obvious that the conditional distri-

bution of the future returns is the same as the distribution of innovations.

When analyzing unconditional risk, we show that GARCH models with dif-

ferent innovation distributions lead to different shape of the downside tail,

hence, different estimates of the tail risk. Therefore, an inappropriate dis-

tributional assumption of innovations may lead to either underestimation or

overestimation of the downside risk. It is thus important to clarify which

type of GARCH innovations should be applied for modeling financial returns

and how this influences the risk analysis on the original GARCH process.

The most often applied GARCH (1,1) model with normal distributed in-

novation assumes that the conditional distribution of financial return given

the return level and the volatility of the previous period follows a normal dis-

tribution. In risk management, recent literature shows that the conditional

normality assumption does not perform well in estimating the downside risk

with a low probability, see Danielsson and De Vries [2000]. Mikosch and

Starica [2000] show that the GARCH process with normal innovation gen-

erates much thinner tail than that obtained from the real data. McNeil and

Frey [2000] show that the GARCH models with heavy-tailed innovation is

more efficient in estimating and forecasting the downside risk of financial re-

turns, whereas the estimates from GARCH models with normal innovation

underestimate the potential downside risk.

McNeil and Frey [2000] detects the heavy-tailedness of innovations based
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on estimated innovations. They find that the conditional normality assump-

tion is not valid. The diagnosis procedure can be divided into two steps:

first, they use Quasi-Maximum-Likelihood-Estimates (QMLE) to estimate

the GARCH coefficients and back out the innovations; second, they use the

Generalized Pareto Distribution to model the estimated innovations and

consequently estimate the tail shape of the distribution of the innovations.

This method has been followed by other studies, see e.g. Hang Chan et al.

[2007].

We start by revisiting their method and show that based on the esti-

mated innovations data generated from the GARCH model with normal

innovations may still violate the normality assumption. This phenomenon

turns apparent when the GARCH process is close to non-stationarity. Thus

the McNeil and Frey [2000] method is not robust in diagnosing the heavy-

tailedness of GARCH innovations. Next, we provide theoretical reason in

explaining this phenomena. We develop an alternative approach based on

analyzing the tail index of the GARCH process. Our method yields a for-

mal test on the distributional assumption of the innovations. Taking normal

and Student-t distributed innovations as examples, simulations show that

our method is robust in the case of Near-Nonstationarity. Moreover, this

method leads to a robust estimate of the tail index of a GARCH process.

We apply our method to the S&P 500 Composite Index and 12 S&P

equity sector indices. The estimated GARCH coefficients indicate that the

fitted GARCH models are close to Nonstationarity. Therefore, the McNeil

and Frey [2000] method is not valid in this case. With our formal test,

we reject the normal innovation in most cases, while can not always reject
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hypothesis on the Student-t innovation.

The rest of the paper is organized as follows. In Section 2, we show

that using the McNeil and Frey [2000] approach based on estimated inno-

vations is not robust for detecting heavy-tailedness of innovations. Instead,

we develop a test based on analyzing the tail index of the GARCH (1,1)

model. A discussion on the Hill estimator used in our test is given in Sec-

tion 3. Simulations and empirical results are presented in Section 4. Section

5 concludes.

2 Theory

2.1 Heavy-tailedness of the GARCH Series

We consider the GARCH (1,1) model in modeling the time series of financial

returns. Suppose the returns {Xt} satisfies the following model:

Xt = εtσt, (1)

σ2
t = λ0 + λ1X

2
t−1 + λ2σ

2
t−1, (2)

where {εt} are independent and identically distributed (i.i.d.) innovations

with zero mean and unit variance, the parameters λ0, λ1, λ2 are positive.

Moreover, in order to have a stationary solution of the GARCH model, we

assume the stationary condition λ1 + λ2 < 1.

The heavy-tailedness of the stationary solution of a GARCH model fol-

lows from the result of Kesten [1973]. Consider a process {Yt}∞t=0 satisfying
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the stochastic difference equation

Yt = QtYt−1 +Mt, (3)

where {(Qt,Mt)} are i.i.d. R2
+-valued random pairs. Kesten [1973] shows

that the stationary solution of the stochastic difference equation follows a

heavy-tailed distribution. Suppose there exists a positive real number κ,

such that

E(Qκ1) = 1, E(Qκ1 logQ1) <∞, 0 < E(Mκ
1 ) <∞.

Moreover, assume that M1
1−Q1

is non-degenerate and the conditional distri-

bution of logQ1 given Q1 6= 0 is nonlattice. Then the stationary solution of

{Yt} follows a heavy-tailed distribution as

P (Yt > x) = Ax−κ[1 + o(1)], as x→∞, (4)

where κ is the so-called tail index and A is the tail scale.

The GARCH model is associated to a specific stochastic difference equa-

tion. By combining the equations (1) and (2), we derive the following

stochastic difference equation on the stochastic variance series {σ2
t }∞t=0 as

σ2
t = λ0 + (λ1ε

2
t + λ2)σ2

t−1, (5)

which satisfies equation (3) with Qt = λ1ε
2
t + λ2 and Mt = λ0. Denote
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ϕt = ε2t . Suppose κ is the solution to the equation

E[(λ1ϕt + λ2)κ] = 1. (6)

The stationary solution of σ2
t follows a heavy-tailed distribution with tail

index κ. Hence, σt follows a heavy-tailed distribution with tail index 2κ.

The relation (6) implies that E[ε2κt ] <∞. Therefore, the tail of σt is heavier

than that of εt. If εt follows a thin-tailed distribution such as the normal

distribution, σt follows a heavy-tailed distribution. If εt follows a heavy-

tailed distribution, then the tail index of σt is lower than that of εt.

From Mikosch and Starica [2000], we can derive the following relation

P{|Xt| > x} = P{|σtεt| > x} ∼ E[|(εt)|]κP{σt > x}, as x→∞.

Thus |Xt| has a similar tail behavior as σt, in the sense that the tail index

of |Xt| is 2κ.

From the discussion, we observe that the general heavy-tailed feature

of the GARCH model is irrelevant to the distribution of the innovation.

No matter the innovation follows a thin or heavy-tailed distribution, the

stationary solution of the GARCH model is always heavy-tailed. However,

the shape of the tail distribution of a stationary GARCH series does depend

on the distribution of innovations: the solution to equation (6) differs for

different distributions of ϕt. Hence different distributional assumptions on

the innovations may lead to different risk analysis on a GARCH series. It

is thus necessary to verify which innovation model fits the actual financial
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returns.

2.2 Diagnosing the Distribution of GARCH Innovations: the

McNeil and Frey Approach

McNeil and Frey [2000] (MF2000) confirms that when modeling financial

time series by a GARCH model, the innovation is heavy-tailed. They show

the heavy-tailedness of the innovations by making QQ plot on the estimated

innovations against a normal distribution. Since the innovations are backed

out from an estimation procedure, its heavy-tailedness may potentially be

imposed by the estimation procedure. We demonstrate this phenomenon by

the following simulation.

Given the Maximum-Likelihood-Estimates (MLE) λ̂0, λ̂1, λ̂2 (see Boller-

slev et al. [1986]) on the GARCH coefficients, one can estimate the innova-

tions ε̂t by

ε̂t = Xt/σ̂t, (7)

σ̂2
t = λ̂0 + λ̂1X

2
t−1 + λ̂2σ̂

2
t−1. (8)

Using the same data as in MF2000, we reproduce their QQ plot in Figure

1 (left panel). In addition, we generate a series of observations from the

GARCH (1,1)-normal process with the model coefficients equivalent to the

MLE obtained from the real data. Then we re-estimate the innovations from

(7) & (8) and display the corresponding QQ plot in Figure 1 (right panel).

We find that the estimated innovations from the generated data still violate

the normality assumption, while exhibit a heavy-tailed feature.
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Figure 1: QQ-Plots

Note: The QQ-plots show the estimated innovations against the sample quantiles from a
normal distribution. Straight line corresponds to that the estimated innovations follow a
normal distribution. The left panel demonstrates the estimated innovations from fitting
the S&P 500 returns (from June 1985 to May 1989) to a GARCH (1,1) model by MLE.
The right panel demonstrates the estimate innovations from fitting a generated sample,
with the same sample size, while data are generated from a GARCH (1,1)-normal model,
with the coefficients equivalent to the MLE from S&P 500 returns.

Recall that the generated data follow exactly a GARCH (1,1) model with

normal innovations. We observe that using estimated innovations backed out

from a finite sample is not a robust method in testing the heavy-tailedness

of the innovations. The intuition of the non-robustness is given as follows.

Suppose the GARCH coefficients are perfectly estimated, i.e. λ̂0 = λ0

λ̂1 = λ1, λ̂2 = λ2. By combining equations (2) and (8), we have that

σ̂2
t − σ2

t = λ2(σ̂2
t−1 − σ2

t−1) = ... = λt2(σ̂2
0 − σ2

0)

Hence, σ2
t is not accurately estimated by σ̂2

t for a finite t. This may lead to

a misestimation in the innovations. The difference between σ̂2
t and σ2

t stems

from that between σ̂2
0 and σ2

0. Moreover, the difference between σ̂2
0 and σ2

0

comes from the fact that σ̂2
0 is simply some initial value chosen in estimation,
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while σ2
0 follows the stationary solution of the stochastic difference equation

(5), i.e. a heavy-tailed distribution. When λ1+λ2 is close to 1, the parameter

κ from equation (6) is close to 1. In the case κ = 1, we get that E(σ2
t ) =

+∞. Hence any initial value σ̂2
0 may underestimates the potential σ2

0, which

implies that σ̂2
t underestimates σ2

t . Hence ε̂t may demonstrate a heavier

tail than εt. This is the main intuition why given that εt follows a normal

distribution, it is still possible to obtain heavy-tailedness in the distribution

of ε̂t.

The following lemma shows theoretically that based on finite observa-

tions generated from a GARCH model with normal innovations, the esti-

mated innovations follow a heavy-tailed distribution.

Proposition 1 Consider a GARCH (1,1) model in (1) and (2) with nor-

mal distributed innovations {εt}. Suppose λ̂0, λ̂1 and λ̂2 perfectly estimate

λ0, λ1 λ2, i.e. λ̂0 = λ0 λ̂1 = λ1, λ̂2 = λ2. The estimated innovations from

(7) and (8) follow a heavy-tailed distribution for any finite t.

2.3 Testing Distributional Assumptions on GARCH Innova-

tions

The different distributional assumptions on the GARCH innovations lead

to different level of heavy-tailedness of the GARCH series, measured by its

tail index. This provides an alternative way to test which innovation fits the

data.

We investigate the difference between Student-t and normal innovations

as an example. The GARCH series with these two types of innovations
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exhibit different tail behavior.

Definition 2 In a GARCH(1,1)-normal model, the innovation εt follows a

standard normal distribution. The parameter κ solved from equation (6)

is denoted as κn(λ1, λ2). Then the tail index of the GARCH series is

αn(λ1, λ2) = 2κn(λ1, λ2).

Definition 3 In a GARCH(1,1)-Student model, the innovation εt follows a

Student-t distribution with degree of freedom ν, normalized to unit variance.

The parameter κ solved from equation (6) is denoted as κs(λ1, λ2, ν). The

tail index of the GARCH series is αs(λ1, λ2, ν) = 2κs(λ1, λ2, ν).

Notice that κn = κs = 1 for λ1 + λ2 = 1.

The GARCH coefficients λ1, λ2 are connected to the tail index according

to αn(λ1, λ2) or αs(λ1, λ2, ν). With assuming the innovations follow a nor-

mal or Student-t distribution, we obtain the implied tail indices αn(λ̂1, λ̂2)

or αs(λ̂1, λ̂2, ν̂) after estimating the GARCH coefficients by λ̂1, λ̂2 and ν̂.

The parameters λ1, λ2 and ν can be estimated under either the GARCH-

normal or Student-t specification by for example the MLE procedure. Once

the distribution of the innovations is correctly specified, the estimates are

consistent. Together with the fact that both κn(λ1, λ2) and κs(λ1, λ2, ν) are

continuous functions with respect to λ1, λ2 and ν, we get that the implied

tail indices αn(λ̂1, λ̂2) and αs(λ̂1, λ̂2, ν̂) are consistent estimates of the tail

index of the GARCH series.

However, if the distribution of innovations is misspecified, we have the

following lemma showing the inconsistency of the implied tail index.
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Lemma 4 Suppose X1, ..., XT follow a GARCH (1,1)-Student process, λ̂1, λ̂2, ν̂

are the consistent estimates of λ1, λ2, ν when fitting either a GARCH-

normal or GARCH-Student model, α is the real tail index of the series.

Then as T →∞,

P (αn(λ̂1, λ̂2) > α)→ 1.

The relation P (αn(λ̂1, λ̂2) > α) → 1 indicates that αn(λ̂1, λ̂2) overestimate

the real tail index α when the observations are drawn from a GARCH(1,1)-

Student model. A detailed proof is given in Appendix.

Alternatively, the tail index of a GARCH series can be estimated from

the so-called Hill estimator in extreme value analysis. Let X1, ..., XT be the

observations from a heavy-tailed distribution as in equation (4). The Hill

estimator is defined as

α̂H :=

(
1
k

T∑
i=1

1{Xi>s}[log(Xi)− log(s)]

)−1

, (9)

where k) is the number of observations that exceed the threshold s, satisfying

k
T → 0 as T → ∞. The Hill estimator is usually applied to i.i.d. sample.

Nevertheless, Resnick and Stărică [1998] shows that the consistency of Hill

estimator for the solutions of stochastic difference equations of the form in

equation (3) holds. For the asymptotic normality of the Hill estimator, it

follows from Hsing [1991] and Carrasco and Chen [2002]. Following the result

in Carrasco and Chen [2002], the GARCH (1,1) process we are studying

satisfies the β-mixing conditions. Following the result in Hsing [1991], the

Hill estimator converges to the tail index α with speed of convergence
√
k.
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The asymptotic limit is given as

√
k

(
1
α̂H
− 1
α

)
d→ N(0, v2),

where the asymptotic variance v2 is given as v2 = 1+χ+ω−2ψ
α2 . The param-

eters χ, ω and ψ refer to measures on the level of serial dependence. The

estimators χ̂, ω̂ and ψ̂ are given in (3.6) in Hsing [1991]. Hence for GARCH

(1,1) process, we can apply the Hill estimator with the asymptotic property

as follows:
√
k

(
α

α̂H
− 1
)

d→ N(0, 1 + χ+ ω − 2ψ).

By testing whether the implied tail indices obtained from the GARCH

(1,1)-normal and GARCH (1,1)-Student models differ from the estimated

tail index, we can formally distinguish the two models. The following the-

orem gives the asymptotic properties of the test statistics. With the fact

that λ̂1, λ̂2, ν̂ converges to the parameters λ1, λ2, ν with a faster speed of

convergence than that of the Hill estimator. The proof follows from the

asymptotic normality of the Hill estimator, thus it is omitted here.

Theorem 5 Denote α̂n = αn(λ̂1, λ̂2), α̂s = αs(λ̂1, λ̂2, ν̂), where λ̂1, λ̂2, ν̂

are consistent estimates of λ1, λ2, ν with a speed of convergence
√
T , α is the

real tail index of the series. α̂H is the Hill estimator with sample fraction k,

such that k →∞, k
T → 0 as T →∞ and

√
k( α

α̂H
−1) d→ N(0, 1+χ+ω−2ψ).

1. If X1, ..., XT follow a GARCH (1,1)-normal process, then
√
k( α̂n

α̂H
− 1) d→ N(0, 1 + χ+ ω − 2ψ), as T → +∞.

2. If X1, ..., XT follow a GARCH (1,1)-Student process, then
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√
k( α̂s

α̂H
− 1) d→ N(0, 1 + χ+ ω − 2ψ), as T → +∞.

Note the MLE satisfies the requirement on the speed of the convergence
√
T ,

see Bollerslev et al. [1986].

3 The Asymptotic Bias of the Hill Estimator

Although the Hill estimator is a valid method in estimating the tail index,

it bears potential asymptotic bias due to the fact that the tail distribution

is not an exact Pareto distribution. In the theoretical setup, the bias is

neglected by assuming
√
k( α

α̂H
− 1) d→ N(0, 1 + χ + ω − 2ψ) as T → ∞.

This is difficult to achieve in practice. The following lemma shows how

the approximation influences the asymptotic bias of the Hill estimator (see

Goldie and Smith [1987]).

Proposition 6 Suppose observations are obtained from a distribution pos-

sessing a density and satisfying the following equation

F (x) = 1−Ax−α
[
1 +Bx−β + o

(
x−β

)]
, β > 0, as x→∞, (10)

where β and B are the second order tail index and tail scale respectively. Let

the threshold s satisfy sα/T → 0, s → ∞ as T → ∞. The asymptotic bias

of α̂H is

E [α̂H − α] =
Bαβ

(α+ β)
s−β + o

(
s−β

)
, (11)

and variance is

V ar [α̂H ] =
α2sα

aT
+ o

(
sα

T

)
. (12)
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Combining the asymptotic bias and variance, we obtain the Asymptotic

Mean Squared Error (AMSE) of the estimator α̂H as follows,

AMSE (α̂H) =
B2α2β2

(α+ β)2
s−2β +

α2sα

AT
. (13)

One can choose the optimal threshold s by minimizing (13). With the

optimal threshold, the squared bias and variance vanish at the same rate.

The asymptotic bias problem turns severe for finite sample applications

with serial dependence such as the GARCH series. This may potentially

contaminate the test procedure introduced in Theorem 5. Therefore, we

investigate the asymptotic bias of the Hill estimator when applying to a

GARCH series.

We start by clarifying the second order approximation for the tail dis-

tribution of the stationary solution of a GARCH model.

Lemma 7 For the GARCH (1,1)-normal model, suppose the tail expansion

of σ2
t satisfies equation (10), where its tail index κ is the solution to the

equation E[(λ1ϕt + λ2)κ] = 1 for the χ2(1) ditributed random variable ϕ.

Then, β = 1 and

B =
κλ0E[(λ1ϕ+ λ2)κ+1]
1− E[(λ1ϕ+ λ2)κ+1]

< 0. (14)

Remark 8 For the GARCH (1,1)-Student model, the second order index

β = 1 and B has the same form as in (14) if E[(λ1ϕ+ λ2)κ+1] <∞.

Since the constantB is negative for the stationary solution of the GARCH

model with normal innovations, the Hill estimator applied to such a GARCH

series is downward biased. We demonstrate the Hill bias for the GARCH(1,1)-
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Figure 2: Hill Bias of the GARCH (1,1)-normal model

Note: The plots show the Hill bias of the GARCH(1,1)-normal models at the simulated
optimal threshold level. In the left panel, we fix λ1 = 0.08 and plot the bias against λ2,
while in the right panel, we fix λ2 = 0.88 and plot the bias against λ1.

normal model by simulation against various values of λ1 and λ2. We first

fix λ1 at 0.08 and vary λ2 from 0.87 to 0.91, then fix λ2 at 0.88 and vary λ1

from 0.07 to 0.11. The simulation algorithm is as follows.

1. For any fixed λ1 and λ2, calculate the implied tail index α = 2κ, where

κ is solved from equation (6).

2. Generate 2500 samples with sample size 5000 from the GARCH (1,1)-

normal model, then calculate the Hill estimator α̂i(k) of the downside

tail for each sample fraction k, where i = 1, ..., 2500, k = 1, ..., 500.

3. For each k, calculate the corresponding Mean Squared Error (MSE)

as MSE(α̂(k)) = 1
2500

2500∑
i=1

(α̂i(k)− α)2.

4. Find the optimal sample fraction k∗ through minimizing the MSE,

5. Plot the bias 1
2500

2500∑
i=1

(α̂i(k∗)− α) against λ1 or λ2.
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We observe that the bias problem turns severe for λ1 + λ2 � 1, while it

is of a lower importance when λ1 + λ2 is close to 1. Hence our test based

on comparing implied tail indices with the estimated tail index by the Hill

estimation is particularly effective for the case that λ1 + λ2 is close to 1.

In other words, when the GARCH process is close to Nonstationarity, our

method works better.

4 Simulation and Empirical Studies

4.1 Simulation

We use simulation to validate our new diagnosis method on the distribution

of GARCH innovations. We consider two types of distributional assumption,

normal and Student-t distributed innovations.

We generate observations from each model with specific coefficients, then

fit the generated data to both models. The GARCH coefficients are esti-

mated by the MLE outlined in Bollerslev et al. [1986]. With the estimated

GARCH coefficients, we calculate the implied tail indices α̂n and α̂s ac-

cording to the fitted models. Moreover, we obtain the Hill estimates α̂H by

choosing an optimal sample fraction k.1

Each generated sample consists of 4,000 observations. This is close to the

sample size we use later for real data analysis. For each model and fitting

procedure, we repeat 100 times to obtain an average estimate for each tail

index estimator.
1The optimal k is chosen from the first stable region of the tail index estimates in the

Hill plots, which is the plot of the estimates against various potential k levels, see de Haan
and de Ronde [1998].
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Table 1: Tail index estimates of GARCH (1,1)-normal Series
λ1 = 0.08 λ1 = 0.88

λ2 α α̂n α̂s α̂H λ1 α α̂n α̂s α̂H

0.87 11.88 12.02 11.55 6.15 0.07 13.98 14.44 13.80 6.47
0.88 10.62 11.34 10.88 5.94 0.08 10.62 11.63 11.16 5.86
0.89 9.12 8.82 8.51 5.30 0.09 7.90 7.89 7.63 5.05
0.90 7.28 7.42 7.17 4.86 0.10 5.62 5.88 5.71 4.29
0.91 5.00 5.21 5.07 4.31 0.11 3.70 3.96 3.87 3.65

Note: This table presents the tail index estimation results of the data simulated from a
GARCH (1,1)-normal model. For simulating the data, in the left part of the table we fix
the GARCH coefficient λ1 = 0.08 and vary λ2 from 0.87 to 0.91, while in the right part,
we fix λ2 = 0.88 and vary λ2 from 0.7 to 0.11, λ0 = 0.5. For each model, 100 samples
are simulated with each sample consisting of 4,000 observations. The simulated data are
fitted to a GARCH (1,1)-normal model and a GARCH (1,1)-Student-t model. With the
coefficients estimated from the Maximum Likelihood method, we calculate the implied tail
indices α̂n, α̂s. α̂H is the Hill estimate from the simulated data. Numbers reported are
the average levels across 100 samples.

Tables 1 presents the simulation results of GARCH (1,1)-normal model.

For the GARCH coefficients, we first fix λ1 = 0.08 with varying λ2 from 0.87

to 0.91, then fix λ2 = 0.88 with varying λ1 from 0.07 to 0.11. The constant

λ0 is fixed at 0.5. From the results, we observe that both α̂n and α̂s robustly

estimate the tail index α. However, the Hill estimates α̂H considerably un-

derestimate the tail index α, i.e. overestimates the heavy-tailedness. The

underestimation is severe for the case that λ1 + λ2 is relatively low. This

can be explained by the downward bias of the estimate, see Lemma 8. Nev-

ertheless, the Hill estimator performs well in the case that λ1 + λ2 is close

to 1, in other words, when the GARCH series is close to Nonstationarity.

The simulation results of GARCH (1,1)-Student model are presented in

Table 2. We use the same parameters λ0, λ1 and λ2 as in simulations for

the GARCH (1,1)-normal model, while the degree of freedom for Student-t

innovation is set to ν = 6. Different from the normal case, only α̂s robustly
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Table 2: Tail index estimates of GARCH (1,1)-Student series
λ1 = 0.08 λ1 = 0.88

λ2 α α̂n α̂s α̂H λ1 α α̂n α̂s α̂H

0.87 5.94 12.54 6.00 3.94 0.07 6.48 15.25 6.68 4.03
0.88 5.56 11.50 5.81 3.90 0.08 5.56 11.28 5.74 3.78
0.89 5.08 9.54 5.10 3.55 0.09 4.66 8.21 4.79 3.64
0.90 4.42 8.29 4.78 3.51 0.10 3.78 6.06 3.95 3.26
0.91 3.46 5.42 3.46 3.07 0.11 2.88 3.93 2.91 2.95

Note: This table presents the tail index estimation results of the data simulated from a
GARCH (1,1)-Student model. For simulating the data, in the left part of the table we fix
the GARCH coefficient λ1 = 0.08 and vary λ2 from 0.87 to 0.91, while in the right part,
we fix λ2 = 0.88 and vary λ2 from 0.7 to 0.11, λ0 = 0.5. The degree of freedom for the
Student-t innovation ν = 6. For each model, 100 samples are simulated with each sample
consisting of 4,000 observations. The simulated data are fitted to a GARCH (1,1)-normal
model and a GARCH (1,1) - Student-t model. With the coefficients estimated from the
Maximum Likelihood method, we calculate the implied tail indices α̂n, α̂s. α̂H is the Hill
estimate from the simulated data. Numbers reported are the average levels across 100
samples.

estimates the tail index of the GARCH series in this case. The normal in-

novation fitted estimate α̂n generally overestimates, while the Hill estimator

α̂H underestimates the tail index α for the case that λ1+λ2 is relatively low.

Similar to the GARCH (1,1)-normal model, the Hill estimator α̂H performs

well for the case that the GARCH series is close to Nonstationarity.

As a conclusion, comparing the implied tail index with the Hill estimate

yield a valid test on the null hypotheses that the GARCH innovations follow

a particular distribution, under which the implied tail index is calculated.

This method is efficient particularly when the GARCH series is close to

Nonstationarity.
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Table 3: Tail index estimates of Real Data
GARCH-normal GARCH-Student Tail Index p-Value
λ̂1 λ̂2 λ̂1 λ̂2 ν̂ α̂n α̂s α̂H pn ps

S&P 0.0770 0.9174 0.0766 0.9225 6.3377 3.92 2.18 3.05 0.01 0.01
Auto 0.0616 0.9290 0.0655 0.9284 5.9823 6.48 3.34 3.00 0.00 0.29
BioTech 0.0608 0.9346 0.0536 0.9455 5.9461 4.48 2.34 3.40 0.00 0.00
Media 0.0693 0.9257 0.0675 0.9285 7.8790 4.10 3.10 3.00 0.00 0.76
Chemical 0.0818 0.9182 0.0747 0.9238 6.6022 2.02 2.32 2.97 0.01 0.07
Pharm 0.0755 0.9152 0.0798 0.9152 5.9035 5.10 2.80 3.25 0.00 0.12
Retail 0.0649 0.9298 0.0594 0.9373 7.5191 4.48 3.12 3.12 0.00 1.00
SoftWare 0.0596 0.9356 0.0562 0.9438 6.3752 4.66 2.00 3.57 0.00 0.00
Transport 0.0587 0.9365 0.0664 0.9260 6.7542 4.76 3.74 3.38 0.00 0.37
Aero 0.0739 0.9197 0.0727 0.9198 6.7959 4.30 3.50 3.37 0.01 0.73
Steel 0.0525 0.9418 0.0541 0.9433 7.0444 5.84 3.00 2.57 0.00 0.06
Insurance 0.0925 0.9041 0.0891 0.9109 5.5377 2.86 2.02 2.33 0.07 0.30
Bank 0.0870 0.9130 0.0863 0.9137 7.1837 2.02 2.00 2.60 0.06 0.05

Note: This table presents the results of S&P 500 index and 12 equity indices from US
market (01.01.1995-31.12.2010). With the coefficients estimated from the Maximum
Likelihood method, we calculate the implied tail indices α̂n, α̂s. α̂H is the Hill estimate.
pn, ps are the corresponding p-values based on the test statistics in Theorem 5 under
95% confidence level.

4.2 Empirical Study on Equity Indices

In this section, we apply our method to detect the distribution of the

GARCH innovations once fitting the GARCH model to real data. The

dataset consists of S&P 500 Composite Index and 12 S&P equity sector in-

dices. The time series of daily data runs from 1 January 1995 to 31 December

2010, with a sample of size 4174. All data are collected from Datastream.

We fit the data by both GARCH models with normal and Student-t

innovations. With the estimated GARCH coefficients λ̂1, λ̂2 and ν̂, we

report the implied tail indices α̂n, α̂s. We also estimate the tail index

by the Hill estimator α̂H . By applying the test in Theorem 5, we report

the corresponding p-values of the hypothesis tests that either the normal

innovation or the Student-t innovation is regarded as the null hypothesis.
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The results are reported in Table 3.

Firstly, it is notable that for all 13 series, λ̂1 + λ̂2 under any model is

close to 1. Hence, the GARCH series, no matter which type of innovations,

are close to Nonstationarity. This is exactly the case in which the MF2000

method based on estimated innovations fails, while our method based on

comparing the implied tail indices with the Hill estimates produces robust

testing result. Next we observe that α̂n is generally higher than α̂s in all

indices except Chemical and Banking sectors. Furthermore, in the p-value

columns, we observe that for 10 out of the 13 indices the null hypothesis of

Student-t innovations are not rejected under 95% confidence level, whereas

for 11 out of 13 indices the null hypothesis of normal innovations are rejected

under the same confidence level.

Therefore, we conclude that the GARCH innovations of the equity in-

dices are more likely to follow the Student-t distribution. One potential rea-

son of such a preference is the fact that the Student-t distribution exhibits

heavy-tails while the normal distribution does not. Hence, we draw the

same conclusion as in MF2000 that assuming conditional heavy-tailedness

is necessary when applying GARCH models to financial returns, albeit from

a different approach.

5 Conclusion

This paper investigates the diagnosing method on the distribution of GARCH

innovations. We first show that the method in McNeil and Frey [2000] based

on estimated innovations is not reliable to detect the heavy-tailedness of the

21



GARCH innovations, particularly for the case that the GARCH process is

close to Nonstationarity. Even though the observations are generated from

a GARCH model with normal innovations, the estimated innovations from

a finite sample follow a heavy-tailed distribution.

We provide an alternative approach on diagnosing the distribution of

GARCH innovations by comparing implied tail indices with the estimate

from the Hill estimator. A formal test is established from such an approach.

In our method, the asymptotic bias of the Hill estimator may potentially

contaminate the test. Nevertheless, the potential contamination is of less

problematic once the GARCH process is close to Nonstationarity. The sim-

ulation results support our proposed approach.

We apply our method to 13 stock indices. The estimated GARCH coef-

ficients in both models indicates Near-Nonstationarity. Hence, the MF2000

method is not valid for these data. Nevertheless, the results of our method

confirm that a GARCH model with Student-t innovation fits the data better

than a GARCH-normal model.

Our findings lead to important implication in dynamic risk management:

when applying a GARCH model to evaluate conditional risk measures, such

as VaR given the previous return level and volatility, conditional heavy-

tailed distribution should be considered. Using a conditional normal model

may underestimate the potential dynamic risk. Moreover, it is not proper to

evaluate the heavy-tailedness based on the estimated innovations. That may

overestimate the conditional risk measures. Lastly, to accurately evaluate

the unconditional tail risk, it is better to consider the impled tail index

instead of using Hill estimator because of a potential bias. The economic
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significance on the difference between the two types of GARCH model is left

for future research.
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6 Appendix

6.1 Proof of Proposition 1

Equation (7) can be rewritten as

ε̂t =
Xt

σ̂t
=
σt
σ̂t
εt.

Since εt follows a normal distribution and is independent from σt
σ̂t

, it is only

necessary to prove that σt
σ̂t

follows a heavy-tailed distribution.

By iteration we get that σ̂2
t − σ2

t = λt2(σ̂2
0 − σ2

0) and σ2
t = At + Btσ

2
0,

where At and Bt are independent from σ2
0 and have the following forms

At =
t∑

j=1

λ0

j∏
i=2

(λ1ε
2
t−i+1 + λ2),

Bt =
t∏
i=1

(λ1ε
2
i−1 + λ2).

Hence, we have that

P

(
σ2
t

σ̂2
t

> x

)
= P

(
At +Btσ

2
0 > x(λt2(σ̂2

0 − σ2
0) +At +Btσ

2
0)
)

= P
(
[Bt − x(Bt − λt2)]σ2

0 > (x− 1)At + xλt2σ̂
2
0

)
.

We further derive a lower bound of this probability by conditional on Bt <

x+1
x λt2, which guarantees that Bt − x(Bt − λt2) > λt

2
x . We get that

P

(
σ2
t

σ̂2
t

> x

)
> P

(
σ2
t

σ̂2
t

> x,Bt <
x+ 1
x

λt2

)
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> P

(
λt2
x
σ2

0 > (x− 1)At + xλt2σ̂
2
0, Bt <

x+ 1
x

λt2

)
> P

(
λt2
x
σ2

0 > x(At + λt2σ̂
2
0), Bt <

x+ 1
x

λt2

)
= P

(
σ2

0 > x2(
At
λt2

+ σ̂2
0), Bt <

x+ 1
x

λt2

)
.

To continue with the calculation, we study the relation between At and Bt

as follows. From At = At−1(λ1ε
2
t−1 + λ2) + λ0 and Bt = Bt−1(λ1ε

2
t−1 + λ2),

we get that At = At−1
Bt
Bt−1

+λ0. Hence we derive an upper bound for At
Bt

as

At
Bt

=
At−1

Bt−1
+
λ0

Bt
= ... =

t∑
i=1

λ0

Bi
≤

t∑
i=1

λ0

λi2
= λ0

1− λt−1
2

λt−1
2 − λt2

.

Therefore, we continue that calculation on the tail distribution function of

σt
σ̂t

as

P

(
σ2
t

σ̂2
t

> x

)
> P

(
σ2

0 > x2

(
λ0

1− λt−1
2

λ2t−1
2 − λ2t

2

Bt + σ̂2
0

)
, Bt <

x+ 1
x

λt2

)
= EBt1Bt<

x+1
x
λt
2
P

(
σ2

0 > x2

(
λ0

1− λt−1
2

λ2t−1
2 − λ2t

2

Bt + σ̂2
0

)
| Bt

)
∼ EBt1Bt<

x+1
x
λt
2

C

xκ
(
λ0

1−λt−1
2

λ2t−1
2 −λ2t

2

Bt + σ̂2
0

)κ , as x→ +∞.

The last step comes from the facts that σ2
0 is independent from Bt and

follows a heavy-tailed distribution with tail index κ. Here C is the tail scale

of σ2
0. Under the condition Bt <

x+1
x λt2, we have that

EBt1Bt<
x+1

x
λt
2

C

xκ
(
λ0

1−λt−1
2

λ2t−1
2 −λ2t

2

Bt + σ̂2
0

)κ
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≥ C

xκ

(
λ0

1− λt−1
2

λt−1
2 − λt2

x+ 1
x

+ σ̂2
0

)−κ
EBt1Bt<

x+1
x
λt
2

=
C1

xκ
P

(
Bt <

x+ 1
x

λt2

)
,

where C1 is a positive constant. For the part P (Bt < x+1
x λt2), we use the

property of the cumulative distribution function of a χ2 distributed random

variable to simplify the calculation as follows:

P

(
Bt <

x+ 1
x

λt2

)
= P

(
logBt − t log λ2 < log

x+ 1
x

)
= P

(
t∑
i=1

log
(

1 +
λ1

λ2
ε2i

)
< log

x+ 1
x

)

> P

(
t∑
i=1

λ1

λ2
ε2i < log

x+ 1
x

)

>

2
t

(
λ2
2λ1

log x+1
x

)t/2
Γ(t/2)

= C2

(
log
(

1 +
1
x

))t/2
∼ C2x

−t/2, as x→ +∞.

Therefore, we have that

lim inf
x→+∞

P

(
σ2
t

σ̂2
t

> x

)
x(κ+t/2) ≥ C1C2.

Hence, σ2
t

σ̂2
t

follows a heavy-tailed distribution, which implies that σt
σ̂t

follows

a heavy-tailed distribution. This completes the proof of the lemma.
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6.2 Proof of Lemma 4

We first show that κn(λ1, λ2) > κs(λ1, λ2, ν) for any degree of freedom ν

finite. We start with the following Proposition2.

Proposition 9 Let ψ = Z2
ν and φ = Z2

µ, where Zν and Zµ follow stan-

dardized Student-t distribution with degree of freedoms ν and µ respectively.

Then E(ψ) = E(φ) = 1. Denote the cumulative distribution functions of ψ

and φ as Fψ and Fφ, then D(x) =
∫ t
0 F (ψ ≤ x)dx −

∫ t
0 F (φ ≤ x)dx ≥ 0,

∀t > 0 and 2 < ν < µ < +∞.

Proposition 9 states that φ second order stochastically dominates over ψ.

By taking µ→ +∞, we get the following Corollary.

Corollary 10 Let ϕ be a random variable following the χ2(1) distribution.

ϕ second order stochastically dominates over ψ for any finite ν.

Since the function g(s) = (λ1s+λ2)κ is increasing and convex with respect to

s for all κ > 1, following the property of second order stochastic dominance

(see e.g. Meyer [1977]), we have that E[(λ1ϕ+λ2)κs ] < E[(λ1ψ+λ2)κs ] = 1.

Because E[(λ1ϕ+λ2)κ] < 1 for 0 < κ < κn and E[(λ1ϕ+λ2)κ] > 1 for κ > κn

(see proof of Lemma 7), hence we get that κn(λ1, λ2) > κs(λ1, λ2, ν), which

implies that αn(λ1, λ2) > αs(λ1, λ2, ν) for any degree of freedom ν finite.

From the consistency that αs(λ̂1, λ̂2, ν̂) P→ α(λ1, λ2, ν) as T → +∞. It

implies that P (αn(λ̂1, λ̂2) > α)→ 1 as T → +∞.
2The proof of Proposition 9 is available upon request.
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6.3 Proof of Theorem 5

Proof of Statement 1: combining the two facts that the estimated param-

eters λ̂1, λ̂2 have a speed of convergence
√
T and the intermediate sequence

k satisfies k → ∞, k
T → 0 as T → +∞, we get that

√
k(λ̂1 − λ) P→ 0 and

√
k(λ̂2 − λ) P→ 0 as T → +∞.

With the Taylor expansion

κn(λ̂1, λ̂2) = κ(λ1, λ2) +
∂κ

∂λ1
(λ̂1− λ1) +

∂κ

∂λ2
(λ̂2− λ2) + o(λ̂1− λ1, λ̂2− λ2),

we get that
√
k
(
κn(λ̂1, λ̂2)− κ(λ1, λ2)

)
P→ 0 as T → +∞ provided that∣∣∣ ∂κ∂λ1

∣∣∣ and
∣∣∣ ∂κ∂λ2

∣∣∣ are bounded.

We prove the boundedness of the two partial derivatives separately. By

taking the partial derivative of equation (6) with respect to λ1, we get that

E[(λ1ϕ+ λ2)κ]
(

κ

λ1ϕ+ λ2
ϕ+ log(λ1ϕ+ λ2)

∂κ

∂λ1

)
= 0,

which implies that

E[(λ1ϕ+ λ2)κ−1κϕ] = −E [(λ1ϕ+ λ2)κ log(λ1ϕ+ λ2)]
∂κ

∂λ1
.

Hence we get that

∣∣∣∣ ∂κ∂λ1

∣∣∣∣ =
∣∣∣∣ E[(λ1ϕ+ λ2)κ−1κϕ]
E[(λ1ϕ+ λ2)κ log(λ1ϕ+ λ2)]

∣∣∣∣
=

∣∣∣∣∣
κ
λ1
{E[(λ1ϕ+ λ2)κ]− λ2E[(λ1ϕ+ λ2)κ−1]}

E[(λ1ϕ+ λ2)κ log(λ1ϕ+ λ2)]

∣∣∣∣∣ .
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The conditions λ1 > 0, λ2 > 0 and λ1 + λ2 < 1 implies that κ > 1. The

proof of Lemma 7 shows that there exists a lower bound D0 > 0 such that

E[(λ1ϕ+ λ2)κ log(λ1ϕ+ λ2)] > D0. Thus
∣∣∣ ∂κ∂λ1

∣∣∣ < κ(1+λ2)
λ1D0

.

Following the similar procedure, we take the partial derivative of (6)

with respect to λ2 to obtain that

E[(λ1ϕ+ λ2)κ]
(

κ

λ1ϕ+ λ2
+ log(λ1ϕ+ λ2)

∂κ

∂λ2

)
= 0,

which implies that

∣∣∣∣ ∂κ∂λ2

∣∣∣∣ =
∣∣∣∣ κE[(λ1ϕ+ λ2)κ−1]
E[(λ1ϕ+ λ2)κ log(λ1ϕ+ λ2)]

∣∣∣∣ < κ

D0
.

With the bounded partial derivatives, we conclude that

√
k
(
αn(λ̂1, λ̂2)− α

)
P→ 0 as T → +∞. (15)

The asymptotic normality of the Hill Estimator follows from Hsing [1991].

The Hill estimator converges to the tail index α with speed of convergence
√
k. The asymptotic limit is given as

√
k(

α

α̂H
− 1) d→ N(0, 1 + χ+ ω − 2ψ). (16)

Therefore,

√
k

(
α̂n
α̂H
− 1
)

=
√
k

[(
α̂n
α̂H
− α

α̂H

)
+
(
α

α̂H
− 1
)]

=

√
k(α̂n − α)
α̂H

+
√
k

(
α

α̂H
− 1
)
.
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Notice that α̂H
p→ α as T →∞. With (15) and (16), we get that as T →∞,

√
k

(
α̂n
α̂H
− 1
)

d→ N(0, 1 + χ+ ω − 2ψ). (17)

Proof of Statement 2: the proof follows the similar lines as that in

the proof of Statement 1. We only need to check the boundedness of
∣∣∂κ
∂ν

∣∣.
We show that for any given values ν, ν0 > 2, λ1, λ2 > 0 and λ1 + λ2 < 1,∣∣∣κ(λ1,λ2,ν)−κ(λ1,λ2,ν0)

ν−ν0

∣∣∣ is bounded.

Without loss of generality, we assume that ν > ν0. Suppose that three

random variables X ∼ χ2(1), ∆Y ∼ χ2(ν − ν0) and Y0 ∼ χ2(ν0) are in-

dependent. By using the convolution of density functions, we get that

Y := Y0 + ∆Y ∼ χ2(ν). Therefore, we have that
√

X
Y/(ν−2) follows a stan-

dardized t(ν) and
√

X
Y0/(ν0−2) follows a standardized t(ν0) distribution, both

with variance 1. Recall equation (6), we have that,

E[(λ1
X

Y/(ν − 2)
+ λ2)κ(λ1,λ2,ν)] = 1,

E[(λ1
X

Y0/(ν0 − 2)
+ λ2)κ0(λ1,λ2,ν0)] = 1.

Hence,

0 = E

[(
λ1

X

Y/(ν − 2)
+ λ2

)κ(λ1,λ2,ν)
]
− E

[(
λ1

X

Y0/(ν0 − 2)
+ λ2

)κ0(λ1,λ2,ν0)
]

= {E

[(
λ1

X

Y0/(ν0 − 2)
+ λ2

)κ(λ1,λ2,ν)
]
− E

[(
λ1

X

Y0/(ν0 − 2)
+ λ2

)κ0(λ1,λ2,ν)
]
}

+{E

[(
λ1

X

Y/(ν0 − 2)
+ λ2

)κ(λ1,λ2,ν)
]
− E

[(
λ1

X

Y0/(ν0 − 2)
+ λ2

)κ(λ1,λ2,ν)
]
}
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+{E

[(
λ1

X

Y/(ν − 2)
+ λ2

)κ(λ1,λ2,ν)
]
− E

[(
λ1

X

Y/(ν0 − 2)
+ λ2

)κ(λ1,λ2,ν)
]
}

=: I1 + I2 + I3.

We deal with three parts separately. First, for I1, by applying the Mean

Value Theorem (MVT), there exists κ̃ between κ0 and κ, such that

I1 = E

[(
λ1

X

Y0/(ν0 − 2)
+ λ2

)κ̃]
log
(
λ1

X

Y0/(ν0 − 2)
+ λ2

)
(κ(λ1, λ2, ν)− κ0(λ1, λ2, ν0))

=: J1 (κ(λ1, λ2, ν)− κ0(λ1, λ2, ν0)) ≥ D1 (κ(λ1, λ2, ν)− κ0(λ1, λ2, ν0)) .

Secondly, for I2, by applying the MVT, there exists ξ between Y0 and Y ,

such that

−I2 = κE

[(
λ1

X

ξ/(ν0 − 2)
+ λ2

)κ(λ1,λ2,ν)−1
](

λ1X(ν0 − 2)
ξ2

)
(Y − Y0)

6 κE

[(
λ1

X

Y0/(ν0 − 2)
+ λ2

)κ(λ1,λ2,ν)−1
](

λ1X

Y 2
0 /(ν0 − 2)

)
E(Y − Y0)

=: κJ2E(Y − Y0) ≤ D2(ν − ν0).

Thirdly, for I3, by applying the MVT, there exists ν̃ between ν0 and ν such

that

I3 = κE

[(
λ1

X

Y/(ν̃ − 2)
+ λ2

)κ(λ1,λ2,ν)−1
]
λ1X

Y
(ν − ν0)

=: J3(ν − ν0) > D3(ν − ν0).

Here D1, D2 and D3 are the lower bounds of J1, J2 and J3
3. Combining

3The proof on the existence of such lower bounds are available upon request.

32



these three parts, we get that

D1(κ(λ1, λ2, ν)− κ0(λ1, λ2, ν0)) +D3(ν − ν0) ≤ I1 + I3 = −I2 ≤ D2(ν − ν0),

which implies that

∣∣∣∣κ(λ1, λ2, ν)− κ0(λ1, λ2, ν0)
ν − ν0

∣∣∣∣ ≤ ∣∣∣∣D2 −D3

D1

∣∣∣∣ .
Therefore, we get that

∣∣∂κ
∂ν

∣∣ is bounded.

6.4 Proof of Lemma 7

Suppose F (x) = P{σ2
t ≤ x} satisfies (10). Denote F̄ (x) = 1 − F (x). Let

f(ϕ) be the density function of the random variable ϕ. Notice that ϕt = ε2t

follows a χ2(1) distribution. Then,

P{σ2
t > x} = P{λ0ϕt + (λ1ϕt + λ2)σ2

t−1 > x}

= E

[
P{σ2

t−1 >
x− λ0

λ1ϕt + λ2
|λ0, λ1ϕt + λ2}

]
=

∫ ∞
0

F̄

(
x− λ0

λ1ϕ+ λ2

)
f(ϕ)dϕ.

Consider the term F̄
(

x−λ0
λ1ϕ+λ2

)
which has the following expansion

F̄

(
x− λ0

λ1ϕ+ λ2

)
= A

(
x− λ0

λ1ϕ+ λ2

)−κ [
1 +B

(
x− λ0

λ1ϕ+ λ2

)−β
+ o

((
x− λ0

λ1ϕ+ λ2

)−β)]

= A (λ1ϕ+ λ2)κ x−κ
(

1− λ0

x

)−κ
[1 +B(λ1ϕ+ λ2)βx−β

(
1− λ0

x

)−β
+o

((
x− λ0

λ1ϕ+ λ2

)−β)
].
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With the Tailor expansion that

(
1− λ0

x

)−κ
= 1 + κ

λ0

x
+
κ(1 + κ)

2

(
λ0

x

)2

+ o

((
λ0

x

)2
)
,

the above equation is simplified as

F̄

(
x− λ0

λ1ϕ+ λ2

)
= A(λ1ϕ+λ2)κx−κ

[
1 +B(λ1ϕ+ λ2)βx−β + κλ0x

−1 + max{o(x−β−1), o(x−2)}
]
,

Hence we get that

∫ ∞
0

F̄

(
x− λ0

λ1ϕ+ λ2

)
f(ϕ)dϕ = Ax−κ[E[(λ1ϕ+ λ2)κ] +BE[(λ1ϕ+ λ2)κ+β]x−β

+κλ0E[(λ1ϕ+ λ2)κ+1]x−1 + max{o(x−β−1), o(x−2)}].

Comparing with the expansion of F̄ (x) as F̄ (x) = Ax−κ[1+Bx−β+o(x−β)],

if β > 1, then the second order terms on both sides are of unequal order; if

β < 1, then we have that E[(λ1ϕ+λ2)κ+β] = 1, which is contradictory with

the fact that E[(λ1ϕ+ λ2)κ] = 1.

Hence we conclude that the second order index β = 1 and the second

order tail scale B has the unique form as in (14).

Next we show that the second order tail scale B must be negative. Con-

sider the function g(s) = E[(λ1ϕ + λ2)s]. We have that g′′(s) = E[(λ1ϕ +

λ2)s log2(λ1ϕ+ λ2)] ≥ 0, thus g(s) is a convex function, with g(0) = g(κ) =

1. g′(s) is monotonic and continuous, there exists s̄ ∈ [0, κ], such that

g′(s̄) = 0. Because g′(s) is right continuous at 0, we have that lim
s↓0

g′(s) =

E[log(λ1ϕ + λ2)] ≤ log(λ1E(ϕ) + λ2) = log(λ1 + λ2) < 0, hence g′(s) > 0

for s ≥ s̄. Therefore, g(s) is an increasing function for s ≥ s̄, which implies

34



that g(κ+ 1) > 1. This implies that B < 0.
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